Chem. Ber. 108, 875-886 (1975)

Di- und Tetracyanpyrazine

Hans W. Rothkopf, Dieter Wöhrle*, Reinhardt Müller und Gerhard Koßmehl

Institut für Organische Chemie der Freien Universität Berlin, D-1000 Berlin 33, Thielallee 63-67

Eingegangen am 19. August 1974

Diaminomaleonitril (2) wird mit Di- bzw. Tetraketonen und Ketoaldehyden 1 zu Di- bzw. Tetracyanpyrazinen 3 umgesetzt. Anstelle einiger Dicarbonylverbindungen werden auch α -(Hydroxyimino)ketone 4 verwendet. Durch Reaktion von Diiminosuccinonitril (6) mit Di- bzw. Tetracaminen 5 werden Di- bzw. Tetracyanpyrazine 8 erhalten. Die Umsetzung einiger Dicyanpyrazine mit Ammoniak führt zu Aminoimino-5*H*-pyrrolo[3,4-*b*]pyrazinen 9. Die IR- und Elektronenspektren werden diskutiert.

Di- and Tetracyanopyrazines

Diaminomaleonitrile (2) is treated with di- and tetraketones and ketoaldehydes 1 to give diand tetracyanopyrazines 3. In some cases α -(hydroxyimino)ketones are used instead of the diketones. The reaction of diiminosuccinonitrile (6) with di- and tetraamines 5 leads to di- and tetracyanopyrazines 8. Some dicyanopyrazines are converted with ammonia into aminoimino-5*H*-pyrrolo[3,4-*b*]pyrazines 9. The i. r. and electronic spectra are discussed.

Im Rahmen unserer Arbeiten über Phthalocyanine und Hemiporphyrazine benötigen wir Di- und Tetranitrile aromatischer und heteroaromatischer Systeme¹⁻⁵). In dieser Arbeit soll daher zunächst über einige Reaktionen des Diaminomaleonitrils und des Diiminosuccinonitrils berichtet werden, die zu Di- und Tetranitrilen des Pyrazinsystems führen *).

1. Reaktionen des Diaminomaleonitrils (2) mit Diketonen, Tetraketonen und Ketoaldehyden

Die Reaktion von 1,2-Diketonen (1) mit 2 führt in Analogie zur Bildung von Chinoxalinen aus 1,2-Diketonen und 1,2-Diaminobenzol zu in 5,6-Stellung substituierten oder anellierten 2,3-Dicyanpyrazinen (3). Beschrieben wurden die Reaktionen von Glyoxal, Biacetyl, Benzil und 9,10-Phenanthrenchinon zu den Verbindungen 3a, b, c, f^{6-8} . In dieser Arbeit wurden die teilweise unvollständigen Angaben zur Darstellung dieser Dinitrile zunächst ergänzt. Dann wurde 2 mit anderen Diketonen sowie mit Tetraketonen und Ketoaldehyden zu den Verbindungen 3d, e, g-m umgesetzt.

^{*)} Über diese Nitrile und daraus hergestellte makrocyclische Verbindungen wurde am 14. 4. 1972 auf der Chemiedozententagung in Heidelberg vorgetragen.

¹⁾ G. Manecke und D. Wöhrle, Makromol. Chem. 102, 1 (1967).

²⁾ G. Manecke und D. Wöhrle, Makromol. Chem. 120, 176 (1968).

³⁾ G. Manecke und D. Wöhrle, Makromol. Chem. 120, 192 (1968).

⁴⁾ G. Meyer und D. Wöhrle, Makromol. Chem. 175/3, 715 (1974).

⁵⁾ G. Manecke, D. Wöhrle und G. Koßmehl, J. Polymer Sci. C 22, 463 (1968).

⁶⁾ E. Gryszkiewicz-Trochimowski, Rocz. Chem. 8, 165 (1928) [C 1928/II, 440].

⁷⁾ L. E. Hinkel, G. O. Richards und O. Thomas, J. Chem. Soc. 1937, 1432.

⁸⁾ R. P. Linstead, E. G. Noble und J. M. Wright, J. Chem. Soc. 1937, 911.

Die Kondensationsreaktionen laufen als Addition des Nucleophils 2 an die Carbonylgruppe mit anschließender Wasserabspaltung ab. Carbonyle mit höherer Lewis-Acidität an den C-Atomen der Carbonylgruppe lassen sich in Äthanol (z. B. Biacetyl) bzw. in Äthanol/Eisessig (z. B. Benzil) umsetzen. Weniger reaktive Ketone (z. B. Acenaphthenchinon) müssen in Eisessig umgesetzt werden. Weiterhin ist die Nucleophilie der Aminogruppen in 2 im Vergleich zum 1,2-Diaminobenzol herabgesetzt. So reagiert 1,8-Phenanthrolin-9,10-chinon in Äthanol nur mit 1,2-Diaminobenzol, nicht aber mit 2. Dies läßt sich erst in einer säurekatalysierten Reaktion ermöglichen.

Mit Isatin reagiert 2 an der Carbonylgruppe in 3-Stellung⁹⁾. Wir verwendeten in dieser Arbeit *N*-Acetylisatin und erhielten durch Kondensation von 2 mit beiden Ketogruppen die Verbindung 3j. Demnach wird durch den -M-Effekt der Acetylgruppe die Reaktivität der Carbonylgruppe in 2-Stellung des Isatins für eine Reaktion mit 2 erhöht.

In Tab. 3 sind die Versuchsdaten der Umsetzung von 2 mit Di- bzw. Tetraketonen und Ketoaldehyden zusammengestellt.

⁹⁾ H. Bredereck und G. Schmötzer, Liebigs Ann. Chem. 600, 95 (1956).

¹⁰⁾ R. W. Begland und D. R. Hartter, J. Org. Chem. 37, 4136 (1972).

2. Reaktionen des Diaminomaleonitrils (2) mit α-(Hydroxyimino)ketonen

Von Interesse ist die Reaktion von 2 mit solchen Ketoaldehyden bzw. Diketonen, deren Carbonylgruppen teilweise geschützt sind. Damit könnten auch solche Verbindungen umgesetzt werden, die als freie Dicarbonylverbindungen instabil sind. Aus ω -(Hydroxyimino)acetophenon (4a) und α -(Hydroxyimino)propiophenon (4b) wurden mit 2 in Essigsäure die Verbindungen 3d und e synthetisiert. Bei der Reaktion bilden sich in essigsaurer Lösung offenbar zunächst die Dicarbonylverbindungen, die dann mit 2 kondensieren.

3. Reaktionen des Diiminosuccinonitrils (6) mit aromatischen Di- und Tetraaminen

Eine weitere Möglichkeit zur Darstellung von Di- und Tetracyanpyrazinen besteht in der Umsetzung von aromatischen Aminen (5) mit Diiminosuccinonitril (6) in Trifluoressigsäure. Beschrieben wurde die Reaktion von 1,2-Diaminobenzol mit 6 zu 2,3-Dicyanchinoxalin (8a)¹⁰. Nach dieser Methode wurden die Nitrile 8b-gvon uns synthetisiert.

Die Reaktion läßt sich als nucleophile Addition der Diamine an 6 erklären, der in saurer Lösung die Abspaltung von Ammoniak bzw. auch Cyanwasserstoff folgt. In Tetrahydrofuran bei Anwesenheit von p-Toluolsulfonsäure sollten als Hauptprodukte die 2-Amino-3-cyanchinoxaline (7), in Trifluoressigsäure jedoch hauptsächlich die 2,3-Dicyanchinoxaline (8) entstehen 10^{10} .

Wir konnten feststellen, daß bei der Reaktion in Trifluoressigsäure sich in den Rohprodukten der Di- und Tetranitrilverbindungen stets die entsprechenden Verbindungen 7 nachweisen ließen. Bei der Umsetzung von 2,3-Diaminopyridin mit 6 erhielten wir jedoch hauptsächlich 2-Amino-3-cyanpyrido[2,3-b]pyrazin und 8f als Nebenprodukt (s. exp. Teil). Die Isolierung der übrigen Verbindungen 7 interessierte jedoch im Rahmen dieser Arbeit nicht weiter.

In Tab. 4 sind die Versuchsdaten der Umsetzung von aromatischen Di- und Tetraaminen mit $\mathbf{6}$ enthalten.

4. IR- und Elektronenspektren der Verbindungen 3 und 8

Der Verlauf der Kondensationsreaktionen läßt sich sehr gut IR-spektroskopisch verfolgen. In den IR-Spektren sind für die entstandenen Nitrile Absorptionen bei 2250 cm⁻¹ (C = N-Valenz) und 1620-1480 cm⁻¹ (C=C-, C=N-Valenz) charakteristisch. Die typischen Banden für die eingesetzten Ausgangsverbindungen z. B. die C=O-Valenzschwingungen der Carbonylverbindungen bei 1750-1600 cm⁻¹ und die N-H-Valenzschwingungen der eingesetzten aromatischen Amine, von 2 und von 6 bei 3500-3300 cm⁻¹ fehlen. In Tab. 1 sind die für die dargestellten Di- und Tetranitrile 3 und 8 charakteristischen Absorptionsbanden aufgeführt.

Aus den UV-Spektren geht hervor, daß das 2,3-Dicyanpyrazin (3a) im Vergleich zum unsubstituierten Pyrazin¹²⁾ eine bathochrome Verschiebung sämtlicher Absorptionsmaxima zeigt (Tab. 2). Durch Substitution in 5,6-Stellung des 2,3-Dicyanpyrazins (3b, c, m) treten weitere bathochrome Verschiebungen und höhere Extinktionswerte auf. Die in 5,6-Stellung anellierten 2,3-Dicyanpyrazine (8a, 3f, g, h, i, l) zeigen generell im Vergleich zum 2,3-Dicyanpyrazin (3a) eine starke langwellige Verschiebung der Absorptionsmaxima. Die Extinktionswerte für den π - π *-Übergang werden stark erhöht: 3a 227 nm (log $\varepsilon = 3.97$); 8a 257 nm (log $\varepsilon = 4.72$). Mit zunehmender Anellierung beobachtet man eine bathochrome Verschiebung des längstwelligen Absorptionsmaximums: 8a 355 nm; 31 437 nm. Bei den substituierten 2,3-Dicyanchinoxalinen (Verb. 8b, d) treten im Vergleich zum 2,3-Dicyanchinoxalin (8a) wie erwartet bathochrome Verschiebungen der Absorptionsmaxima auf.

5. Umsetzung einiger Dinitrile mit Ammoniak zu 7-Amino-5-imino-5*H*-pyrrolo-[3,4-*b*]pyrazinen

Aus aromatischen 1,2-Dinitrilen lassen sich durch Umsetzung mit Ammoniak die 7-Amino-5-imino-5*H*-pyrrolo[3,4-*b*]pyrazine darstellen¹¹, die sich sehr gut als Ausgangsverbindungen zur Synthese von Phthalocyaninen bzw. Hemiporphyrazinen eignen¹¹). Daher wurden die Verbindungen **3b**, **d**, **e** und **8a** in Methanol mit Ammoniak in guter Ausbeute zu den entsprechenden Aminoimino-5*H*-pyrrolo[3,4-*b*]pyrazinen **9a**-**d** umgesetzt. Die übrigen Nitrile **3** reagieren nach dieser Methode nicht.

¹¹⁾ P. J. Brach, S. J. Grammatica, O. A. Ossana und L. Weinberger, J. Heterocycl. Chem. 1970, 1403.

¹²⁾ UV-Atlas of Organic Compounds, Butterworth, London 1965.

Verb.	Aryl-H	Alkyl-H	C≡N	C = N C = C	Aryl-H	Sonstige funktionelle Gruppen
3a	3080 w		2250 w	1630 w 1550 w 1525 w	880 s 870 w 700 w	
3 b		3010 w	2250 m	1620 m 1560 m	700 W	
3c	3075 w		2250 w	1610 m 1590 m 1520 s	780 s 710 s	
3 d	3060 w		2250 m	1620 m 1600 m 1550 m 1510 m	800 m 770 s 690 s	
3e	3080 w	2950 w	2260 m	1620 m 1605 m 1580 m 1525 s	800 s 785 s 765 s 700 s	
3f	3080 w 3020 w		2250 w	1610 s 1590 w 1520 s 1500 w	790 s 730 s 705 m	
3g	3080 w 3020 w		2250 m	1595 s 1560 m 1525 m 1480 m	810 s 780 m 700 s	
3h	3060 w 3015 w		2240 m	1625 s 1600 m 1510 m 1500 m	840 s 780 m 720 s	
3i	3080 w 3060 w		2250 m	1620 s 1555 m 1530 m 1490 m	840 s 790 s 705 m	
3 j	3090 w	2920 w	2240 m	1610 s 1580 w 1560 w 1490 s	810 m 770 s 700 m	1715 s C=O
3 k			2250 m	1580 s 1495 m		$\begin{array}{c} 3540 \text{ s} & \text{OH} \\ 3460 \text{ s} \\ 3300 \text{ s} \\ 3050 \text{ s} \end{array} \right\} \text{CONH} \\ 1710 \text{ s} C=0 \end{array}$
31	3080 w		2250 w	1630 m 1580 w 1530 m 1500 s	840 s 740 m 700 s	
3 m	3060 w		2240 w	1595 s 1500 s	840 m 820 m 770 m 710 m	1240 s 1175 s C-O-C
8a	3060 w		2250 m	1630 m 1610 m 1560 m 1485 s	820 m 770 s 705 m	

Tab. 1. Charakteristische IR-Absorptionen der Verbindungen 3 und 8 im Bereich von 625-4000 cm⁻¹ (in KBr)

Verb.	Aryl-H	Alkyl-H	C≡N	C=N C=C	Aryl-H	Sonstige funktionelle Gruppen
8b	3030 w	2920 w	2240 m	1620 s 1550 m 1490 s	880 m 830 s 800 m 755 m 705 m	
8c	3060 w	2980 w 2960 w	2240 m	1615 m 1545 m 1510 m 1490 s	885 s 785 m 745 m	
8 d	3095 w		2250 w	1620 m 1575 m 1475 m	860 s 820 s 750 s	1530 s NO ₂ 1350 s NO ₂
8e	überdeck	t	2250 m	1620 w 1560 w 1490 w	860 m 790 m 765 s	3050 s OH 1710 s C=O 1440 s OH
8f	3060 w		2250 w	1640 s 1605 m 1560 s 1475 m	830 m 800 s 760 w 745 w	
8g	3060 w		2250 m	1615 s 1560 m 1480 s	840 s 820 m 795 m	

Tabelle 1 (Fortsetzung)

Tab. 2. UV-Daten der Verbindungen 3 und 8

Verb.	λ(nm)	log ε	Verb.	λ(nm)	log a
Pyrazin ^{a)}	193	3.78	3ic)	325	4.64
	262	3.78	•	364	3.96
	267	3.78		378	3.92
	301	2.88	31c)	284	4.68
3a b)	227	3.97		354	4.26
	273	3.75		437	3.86
	278	3.71	3m ^{b)}	239	4.50
	310	2.81		275	4.31
3bb)	244	4.00		350	4.48
	281	3.81	8 g b)	257	4.72
3c ^{b)}	238	4.10	-	338	3.69
	265	3.99		355	3.68
	330	4.09	8hb)	262	4.76
3f c)	322	4.30	0.0	345	3.74
	371	3.88		356	3.74
	288	3.87	8db)	263	4.41
3gc)	314	4.26		345	3.57
2	348	3.95		363	3.49
3hc)	283	4.61			
	312	4.08			
	355	417			

a) In Wasser.
b) In Acetonitril.
c) In DMF.

Die Verbindungen 9 weisen keinen Schmelzpunkt auf, sondern gehen unter Ammoniakabspaltung in die entsprechenden Phthalocyanine über. Die erfolgreiche Umsetzung der Dinitrile zu den Verbindungen 9 ist IR-spektroskopisch am Verschwinden der $C \equiv N$ -Valenzschwingung bei 2250 cm⁻¹ und am Auftreten der N-H-Valenz- und Deformationsschwingungen bei 3300-2900 bzw. 1650-1600 cm⁻¹ zu sehen (s. exper. Teil).

Dem Fonds der Chemischen Industrie sei für finanzielle Unterstützung gedankt.

Experimenteller Teil

IR-Spektren (KBr-Preßlinge): Perkin-Elmer-Spektrometer 257; Elektronenspektren: Beckman DK 2; Mol.-Massen: CH 5 der Firma MAT (Elektronenstoßionisation, Einlaß über direkt beheizte Schubstange). Die Schmelzpunkte (Büchi "Tottoli") sind nicht korrigiert.

Reaktionen des Diaminomaleonítrils (2) mit Diketonen, Tetraketonen und Ketoaldehyden (1) (Tab. 3)

Methode A (Reaktion in Äthanol)

2,3-Dicyan-5-phenylpyrazin (3d): 1.8 g (13 mmol) 1-Phenyl-1,2-äthandion und 1.45 g (13 mmol) 2 wurden 2 h in Äthanol auf 80°C erhitzt. Beim Abkühlen fielen schwarze Kristalle aus, die zum Umkristallisieren in Äthanol und wenig Wasser unter Zusatz von Aktivkohle gelöst wurden. Nach Filtration fielen farblose Nadeln aus, die i. Vak. über P_2O_5 bei 80°C getrocknet wurden. Ausb. 1.93 g (72%).

Analog wurden dargestellt:

2,3-Dicyanpyrazin (3a)

2,3-Dicyan-5,6-dimethylpyrazin (3b)

2,3-Dicyan-5-methyl-6-phenylpyrazin (3e)

Methode B (Reaktion in Eisessig)

5,6,12,13-Tetracyanpyreno[4,5-b:9,10-b']dipyrazin (31): 0.48 g (1.8 mmol) 4,5:9,10-Pyrendichinon und 0.51 g (4.7 mmol) 2 wurden in 60 ml Eisessig 7 h auf 130°C erhitzt. Beim Abkühlen fiel eine schwarze Verbindung aus, die aus Eisessig mit Aktivkohle umkristallisiert wurde. Die dunkelbraune Substanz wurde über KOH i. Vak. bei 100°C getrocknet. Ausb. 0.49 g (66%).

Analog wurden dargestellt:

2,3-Dicyan-5,6-dimethylpyrazin (3b)
2,3-Dicyan-5,6-diphenylpyrazin (3c)
2,3-Dicyandibenzo[f,h]chinoxalin (3f)
2,3-Dicyandipyrido[2,3-f: 3',2'-h]chinoxalin (3g)
10,11-Dicyanphenanthro[4,5-fgh]chinoxalin (3h)
8,9-Dicyanacenaphtho[1,2-b]pyrazin (3i)
5-Acetyl-2,3-dicyan-5H-pyrazino[2,3-b]indol (3j)
Bis[4-(5,6-dicyan-3-phenyl-2-pyrazinyl)phenyl]äther (3 m)

3
Verbindungen
ler
ur Synthese
2
Datei
analytische
ΰ
un
Ausbeuten
. Reaktionsbedingungen,
Tab

Ż	Eingesetzte Carhonvl-	Methode	ktionsbedingu Zeit	ingen Temn	Алсһ	Schmn	Summen-		Mol.	Ā	nalvse	
	verbindung (s. exp. Teil)	(H)	(°C)	(%)	(C)	formel		Masse	с	Н	z
3a	Glyoxal	A i)	0.5	80	64	132 a, h)	C ₆ H ₂ N ₄	Ber.	130.0280	55.38	1.54 4	13.08
						132 7)		Gef.	130.0208	55.22	1.31	12.89
q	Biacetyl	A/D/B	0.5/0.5/0.5	80/80/80	55/85/83	166a,h) 1717) 1668)	C ₈ H ₆ N ₄	Ber. Gef.	158.0592 158.0621	60.75 60.43	3.82	35.42 35.45
J	Benzil	B/C/E	2/2/1	130/80/80	80/77/71	247 b. h) 246 ⁷⁾ 245 ⁸⁾	C ₁₈ H ₁₀ N ₄	Ber. Gef.	282.0904 282.0890	76.58 76.27	3.57	19.85 19.61
p	I-Phenyl-I,2-äthan- dion	۲	2	80	72	166а, ћ) 167 13)	C ₁₂ H ₆ N ₄	Ber. Gef.	206.0592 206.0598	69.90 69.53	3.02	27.17 26.84
9	I-Phenyl-I,2-propan- dion	A/E	4/2	80/80	71/65	129a.h) 13313)	C ₁₃ H ₈ N ₄	Ber. Gef.	220.0748 220.0749	70.89 70.44	3.56	25.45 25.38
f	9,10-Phenanthren- chinon	B/D	2/2	130/80	75/40	322 c. i) 320 8)	$C_{18}H_8N_4$	Ber. Gef.	280.0748 280.0712	77.13 77.43	2.50 2	19.99 10.31
00	1,8-Phenanthrolin- 9,10-chinon	В	7	130	70	> 330 d, i)	C ₁₆ H ₆ N ₆	Ber. Gef.	282.0654 282.0643	68.08 67.92	2.14	29.77 29.15
ч	4,5-Pyrenchinon	B/C	2/0.5	130/80	70/41	>330 d.j)	$C_{20}H_8N_4$	Ber. Gef.	304.0748 304.0690	78.94	2.65	8.41 8.69
•=	1,2-Acenaphthen- chinon	В	6	130	57	>330e,i)	C ₁₆ H ₆ N ₄	Ber. Gef.	254.0592 254.0579	75.59	2.03	22.38 22.56
	N-Acetylisatin	B ,	4	130	62	232 (Zers.) ^{g)}	C ₁₄ H ₇ N ₅ O	Ber. Gef.	261.0650 261.0623	64.37 64.01	2.41	26.81 26.31
¥	Alloxan	s. exp. Tei	12	110	40	s. exp. Teil ^{t)}	C ₈ H ₂ N ₆ O ₂	Ber. Gef.	214.0240 214.0224	44.87 44.28	0.94	19.24 18.98
Γ	4,5:9,10-Pyrendi- chinon	В	7	130	66	>330d,i)	$C_{24}H_6N_8$	Ber. Gef.	406.0716 406.0718	70.94 71.39	1.49	1.57 1.02
E	4,4'-Oxydibenzil	в	5	130	65	204 e. i)	C ₃₆ H ₁₈ N ₈ O	Ber. Gef.	578.1674 578.1654	74.73	3.14 1	9.37 9.02
a) Far h) Aus	blose Nadeln. – ^{b)} Farblo ; wäßr. Äthanol. – ⁱ⁾ Aus.	se Plättchen Eisessig ^j) U	- c) Gelbe Nade Inter Zusatz von	iln. – d) Braun wenig Oxalsäure	e Verbindung. –	e) Gelbe Verbindur	ıg. — ⁽⁾ Farblose	Verbind	ung. – 8 ⁾	Rote Ver	bindun	 Sain

¹³⁾ F. D. Popp, J. Heterocycl. Chem. 11, 1 (1974).

80
Verbindungen
der
Synthese
zur
Daten
nalytische
und a
Ausbeuten
4
Tab

Verb.	Eingesetzte Aminokomponente	Ausb. (%)	Schmp. (°C)	Summenformel	Mol Analyse Masse C H N
88	1,2-Diamino- benzol	41	219¢,f) 218-22010)	C ₁₀ H4N4	Ber. 180.0436 66.67 2.22 31.11 Gef. 180.0431 66.54 2.32 30.89
q	1,2-Diamino- 4-methylbenzol	54	166a.e)	C ₁₁ H ₆ N ₄	Ber. 194.0592 68.04 3.11 28.85 Gef. 194.0531 67.97 3.12 29.03
v	1,2-Diamino- 4,5-dimethylbenzol	58	204 a.c)	C ₁₂ H ₈ N ₄	Ber. 208.0748 69.22 3.87 26.91 Gef. 208.0766 69.04 3.87 26.32
p	1,2-Diamino- 4-nitrobenzol	58	188 a.c)	C ₁₀ H ₃ N ₅ O ₂	Ber. 225.0287 53.34 1.34 31.10 Gef. 225.0287 53.19 1.34 31.31
Û	3,4-Diamino- benzoesäure	65	220 a,c)	C ₁₁ H ₄ N ₄ O ₂	Ber. 224.0334 58.94 1.80 24.99 Gef. 224.0539 58.43 1.82 24.54
j.,	2, 3-Diamino- pyridin	21	212 d,f)	C9H ₃ N ₅	Ber. 181.0389 59.67 1.67 38.66 Gef. 181.0356 59.31 1.82 38.43
60	3,3'-Diamino- benzidin	48	204 d, 8)	$C_{20}H_6N_8$	Ber. 358.0716 67.04 1.69 31.27 Gef. 358.0676 66.69 1.91 31.55
a) Farblose Nade	ein. – ^{b)} Geibe Nadeln. – ^{c)} Farb	olose Verbindung	d) Gelbe Verbindung. – e	³ Aus wäßr. Äthanol. – ^{f)} Aus I	Benzol. – ^g ' Aus Essigsåure.

Methode C (Äthanol/Eisessig)

10,11-Dicyanphenanthro[4,5-fgh]chinoxalin (3h): Zu 0.19 g (0.82 mmol) 4,5-Pyrenchinon, 0.089 g (0.82 mmol) 2 und 5 ml Eisessig wurden bei 80° C 150 ml Äthanol gegeben. Dann wurde 0.5 h auf 80° C erwärmt. Die ausfallende dunkelbraune Substanz wurde aus Eisessig umkristallisiert und i. Vak. getrocknet. Ausb. 0.10 g (41 %).

Analog wurde dargestellt:

2,3-Dicyan-5,6-diphenylpyrazin (3c)

Methode D (Reaktion in Äthanol/Eisessig/Wasser)

2,3-Dicyandibenzo[f,h]chinoxalin (3f): 0.15 g (0.72 mmol) 9,10-Phenanthrenchinon und 0.08 g (0.74 mmol) 2 wurden mit 20 ml Äthanol und 2 ml 20proz. Essigsäure versetzt und 2 h auf 80°C erwärmt. Das ausgefallene 3f wurde aus Eisessig mit Aktivkohle umkristallisiert und i. Vak. über KOH getrocknet. Ausb. 0.08 g (40%).

Analog wurde dargestellt:

2,3-Dicyan-5,6-dimethylpyrazin (3b)

Methode E (Reaktion in Äthanol, Chlorwasserstoffsäure, Natriumacetat)

2,3-Dicyan-5-methyl-6-phenylpyrazin (3e): 0.28 g (2.4 mmol) 1-Phenyl-1,2-propandion, 0.26 g (2.4 mmol) 2, 0.3 ml konz. Salzsäure und 0.25 g Natriumacetat wurden vermischt und soviel Äthanol zugegeben, bis alles gelöst war. Dann wurde 2 h auf 80°C erhitzt und heiß filtriert. Das Filtrat wurde mit Aktivkohle aufgekocht; aus der filtrierten Lösung fielen farblose Nadeln aus, die bei 80°C i. Vak. getrocknet wurden. Ausb. 0.34 g (65%).

Analog wurde dargestellt:

2,3-Dicyan-5,6-diphenylpyrazin (3c)

6,7-Dicyan-2,4-dihydroxypteridin (3k): 2.14 g (10 mmol) Alloxan (als Tetrahydrat) und 1.08 g (10 mmol) 2 wurden mit ca. 100 mg Borsäure in 30 ml Eisessig 2 h bei 110°C gerührt. Dann wurde heiß filtriert und das Filtrat i. Vak. bis zur Trockne eingedampft. Die gelbe Substanz wurde mit Äthanol aufgenommen, mit Aktivkohle aufgekocht und filtriert. Das Filtrat wurde eingeengt, die dabei ausfallende farblose Substanz abgesaugt, gründlich mit kaltem Wasser gewaschen und über P₂O₅ i. Vak. bei 100°C getrocknet. Ausb. 0.85 g (40%). 3k färbt sich bei 230°C grün, ohne zu schmelzen.

Reaktion von Diaminomaleonitril (2) mit α-(Hydroxyimino)ketonen (4)

2,3-Dicyan-5-phenylpyrazin (3d): 0.75 g (5 mmol) ω -(Hydroxyimino)acetophenon (4a) wurden in 30 ml Eisessig/Wasser (1:1) gelöst und 0.54 g (5 mmol) 2 zugegeben. Nach 2 stdg. Erhitzen auf 80°C wurde bis zur Trockne eingeengt und mehrmals durch fraktionierte Kristallisation aus Äthanol/Wasser umkristallisiert. Hierbei konnte das schwer lösliche 3d in farblosen Nadeln erhalten werden, die über P₂O₅ bei 80°C i. Vak. getrocknet wurden. Ausb. 0.15 g (15%). Das nicht umgesetzte 4a konnte beim Umkristallisieren zurückgewonnen werden.

2,3-Dicyan-5-methyl-6-phenylpyrazin (3e): Die Darstellung von 3e aus 0.82 g (5 mmol) α -(Hydroxyimino)propiophenon (4b) mit 0.54 g (5 mmol) 2 erfolgte analog zur Synthese von 3d. Es resultierten farblose Nadeln. Ausb. 0.12 g (11 %).

Die näheren Angaben für die aus den α -(Hydroxyimino)ketonen gewonnenen Dinitrile **3d** und e sind identisch mit den in Tab. 3 enthaltenen Angaben der aus den entsprechenden Dicarbonylverbindungen gewonnenen Nitrile.

Reaktion des Diiminosuccinonitrils (6) mit aromatischen Di- bzw. Tetraaminen (5) (Tab. 4)

2,3-Dicyan-6-nitrochinoxalin (8d): Ein Gemisch von 0.67 g (6.3 mmol) 6 und 0.96 g (6.3 mmol) 1,2-Diamino-4-nitrobenzol wurde unter Stickstoff langsam unter Rühren in 30 ml Trifluoressigsäure eingetragen. Die Reaktionstemp. wurde durch gelegentliches Kühlen auf $5-10^{\circ}$ C gehalten. Nach 12stdg. Rühren bei Raumtemp. wurde i. Vak. bis zur Trockne eingedampft. Der erhaltene gelbe Rückstand wurde aus Äthanol und wenig Wasser unter Zusatz von Aktivkohle umkristallisiert. Gelbe Nadeln. Ausb. 0.82 g (58%).

Analog wurden dargestellt:

2,3-Dicyanchinoxalin (8a)

2,3-Dicyan-6-methylchinoxalin (8b)

2,3-Dicyan-6,7-dimethylchinoxalin (8c)

2,3-Dicyan-6-chinoxalincarbonsäure (8e)

2,2',3,3'-Tetracyan-6,6'-bichinoxalin (8g)

2,3-Dicyanpyrido[2,3-b]pyrazin (**8f**) und 2-Amino-3-cyanpyrido[2,3-b]pyrazin: Ein Gemisch von 0.68 g (6.4 mmol) **6** und 0.69 g (6.4 mmol) 2,3-Diaminopyridin wurde unter Stickstoff und Rühren in 20 ml Trifluoressigsäure gegeben. Durch gelegentliche Eiskühlung wurde eine Reaktionstemp. von 10°C eingehalten. Nach 12stdg. Rühren bei Raumtemp. wurde das Lösungsmittel i. Vak. entfernt. Der gelbe Rückstand wurde mit Benzol aufgekocht, wobei ein Teil in Lösung ging. Beim Abkühlen fiel aus dem Filtrat **8f** als gelbe Substanz aus. Ausb. 0.24 g (21%).

Der Rückstand ließ sich aus Äthanolund wenig Wasser umkristallisieren. Es resultierten gelbe Nadeln von 2-Amino-3-cyanpyrido[2,3-b]pyrazin. Auf eine Trennung der beiden möglichen Isomeren wurde verzichtet. Ausb. 0.47 g (43 %), Schmp. 243 °C (Zers.).

IR: 3420 s (NH); 3320 s (NH); 2250 m (C=N); 1660 s (NH); 1620 s, 1570 s, 1550 s (C=C, C=N); 830 m, 800 m, 760 cm⁻¹ m (Aryl-H). - MS (70 eV): m/e = 171 (100%, M⁺), 143 (33%), 119 (25%), 92 (35%).

C₈H₅N₅ (171.2) Ber. C 56.14 H 2.94 N 40.92 Gef. C 55.90 H 2.91 N 40.15

7-Amino-5-imino-2-phenyl-5H-pyrrolo[3,4-b]pyrazin (9b): 0.59 g (2.3 mmol) 3d und 0.2 g Natriummethylat wurden in absol. Methanol gelöst. Anschließend wurde bei Raumtemp. 1 h trockenes Ammoniak eingeleitet und danach unter weiterem Einleiten von Ammoniak 1.5 h zum Sieden erhitzt. Dabei wurde besonders auf ein konstantes Lösungsmittelvolumen geachtet. Während des Siedens fiel eine farblose Substanz aus, die heiß abfiltriert, gründlich mit Wasser und Aceton gewaschen und anschließend i. Vak. über P_2O_5 getrocknet wurde. Ausb. 0.42 g (66%). 9b spaltet unter Grünfärbung bei 225°C Ammoniak ab.

IR: 3250 s (NH); 1670 s (NH); 1620 s, 1550 s, 1510 w (C=C, C=N); 780 m, 740 cm⁻¹ m (Aryl-H). - MS (70 eV): m/e = 223 (100%, M⁺), 206 (42%), 180 (31%), 153 (25%), 128 (15%), 103 (23%).

 $C_{12}H_9N_5$ (223.2) Ber. C 64.57 H 4.06 N 31.37 Gef. C 64.36 H 3.95 N 30.92 Die Darstellung von **9a**, c und d erfolgte analog.

7-Amino-5-imino-2,3-dimethyl-5H-pyrrolo[3,4-b]pyrazin (9a): Aus 3b resultiert eine hellgrüne Verbindung. Ausb. 69%. Schmp. > 320°C.

IR: 3250 s (NH); 1630 m (NH); 1610 m, 1540 cm⁻¹ s (C=C, C=N).

C₈H₉N₅ (175.2) Ber. C 54.85 H 5.18 N 39.97 Gef. C 55.17 H 5.29 N 39.21

7-Amino-5-imino-3-methyl-2-phenyl-5H-pyrrolo[3,4-b]pyrazin (9c): Aus 3e resultiert eine hellgrüne Substanz. Ausb. 68%. 9c spaltet ab 235°C Ammoniak ab.

IR: 3260 s (NH); 1670 s (NH); 1620 s, 1600 m, 1545 s (C=C, C=N); 770 m, 735 m, 705 cm⁻¹ s (Aryl-H). -- MS (70 eV): $m/e = 237 (100\%, M^+), 220 (23\%), 210 (12\%), 194 (16\%), 168 (13\%), 103 (18\%).$

 $C_{13}H_{11}N_5$ (237.3) Ber. C 65.81 H 4.67 N 29.52 Gef. C 65.41 H 4.58 N 28.87

1-Amino-3-imino-3H-pyrrolo[3,4-b]chinoxalin (9d): Aus 8a entsteht eine farblose Verbindung. Ausb. 75%. Schmp. > 320°C.

IR: 3250 s (NH); 1640 m (NH); 1595 m, 1540 s, 1500 s (C=C, C=N); 770 s, 745 m, 730 cm⁻¹ m (Aryl-H). - MS (70 eV): m/e = 197 (100%, M⁺), 180 (35%), 155 (52%), 128 (32%), 103 (29%), 102 (19%).

 $C_{10}H_7N_5$ (197.2) Ber. C 60.91 H 3.58 N 35.51 Gef. C 60.48 H 3.49 N 35.10

[332/74]